

Section 4

Operations Concept/Scenario

Outline

- Ground System Architecture
- Operations Overview
 - Week in the Life of GLAST
- Mission Planning and Command Generation
- Ground Station and TDRSS Scheduling
- Telemetry and Command
 - Real-time telemetry
 - Target of Opportunity Handling
 - Burst Alert Handling
 - Solid State Recorder Management
- Off-line Analysis
 - Level 0
 - Trending and Data Analysis
 - As-Flown Timeline

Ground System Architecture

Operations Overview: Week in the Life

- Nominal MOC Operations Highly Automated (approach based on IMAGE, MAP, SMEX, Swift, etc. heritage)
 - Single 8x5 Staffed Shift (On-call FOT outside normal 8x5 shift)
 - Manual Activities (FOT)
 - Mission Activity Planning and Scheduling, GN and SN Scheduling, Real-Time commanding, Telemetry Monitoring, Spacecraft and Instrument FSW Loads, MOC Maintenance (PDB, Software, or Hardware)
 - Automated Activities (Software, Scripts)
 - Off-Shift Pass execution, Data Processing, Telemetry Monitoring, Data Archiving, Trending, Event Logging, Alarm Recognition, Automated Personnel Notification

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	
8AM	- R/T command opportunity							
		- Mission Planning and Scheduling	- Uplink new ATS			On-	Call	
5PM	L0 processingData trending	- L0 pro - Data tr	•					

- MOC/FOT provides "front-line" support for spacecraft and instrument health and safety and performance monitoring/trending
 - Instrument performance analysis/monitoring primarily responsibility of respective IOC's
 - Spectrum Astro provides spacecraft sustaining engineering as "back-up" to FOT
- Ground stations for routine commanding and high rate data dumps
 - Malindi, Kenya and Universal Space Network (South Point, Hawaii)
 - Perform RS-decoding, report statistics to MOC, sorts data by virtual channel, and time stamps data at the frame level
 - 2.5 Mbps S-band: Real-time telemetry (HK and Burst Alerts), Memory Dumps, Housekeeping Data Dumps (SSR)
 - 20 Mbps X-band: Science Data Dumps (SSR)
 - Approximately 5-6 contacts per day
 - High-rate S-band and X-band data received post-pass within 6 (TBR) hours of end of pass
- Space Network (TDRS, WSC, DAS, SWSI)
 - Provides continuous MA Demand Access (DAS) service for Burst Alerts, low rate HK, and Safe Mode Notifications
 - Provides schedulable MA and SSA service for ToO support, higher rate HK, flight software updates

- Observatory primarily operates in Survey Mode for first year
 - With occasional requests for special targeting or autonomous repointing
- After first year, science operations also driven by Guest Investigator Program and autonomous repointing
 - Survey mode will still predominate during later years
 - GSSC serves as central collection point and coordinator for science/mission planning and scheduling, providing an integrated science timeline to MOC
- LAT and GBM detect Gamma-Ray Bursts and generate Burst Alerts that are sent to the ground via the continuously available SN/TDRSS Demand Access Service (DAS)
 - MOC forwards the burst alerts automatically to science community via the BAP/GCN

- Orbit determination automated due to use of on-board GPS
 - MOC receives orbit data in telemetry and propagates as needed for ground station and SN scheduling
 - MOC provides spacecraft with TDRS ephemeris data as needed
- Implementing additional orbit determination methods to augment the on-board GPS capability
 - Used to help verify the GPS capability during L&EO and for contingencies if GPS capability is ever unavailable
 - Method 1: NORAD-generated Two-Line Elements (TLE's), like Swift
 - TLE's should give us accuracy to 1-5 km
 - Processed by MOC and FDF (if needed)
 - Method 2: Differenced One-Way Doppler (DOWD) with TDRSS
 - Spacecraft telemetry received by two TDRS satellites
 - FDF able to generate orbit solution using this data, and provides orbit products to the MOC
 - On UARS, DOWD provided orbit position accuracy to <0.5 km
 - Neither method impacts spacecraft design nor science data collection

- Majority of science and mission operations pre-planned and executed from stored command loads
 - Frequency of stored command loads is expected to be weekly, with nominally no uplink of commands over the weekends
 - System does support late changes to on-board schedule (after load has been uplinked)
- Project Scientist able to quickly retarget observatory via Target of Opportunity (ToO) Requests
 - Expected approximately once per month, but higher frequencies can be supported if science dictates
 - ToO's handled by GSSC and MOC
 - Turnaround requirement < 6 hours
 - From point where Project Scientist gives GSSC go-ahead to when ToO commands hit spacecraft

Mission Planning and Command Generation

- IOC's develop the commands/timelines for their instruments and send to GSSC
- Inputs from IOCs are sent to GSSC
 - Includes FSW loads, calibration activities, instrument adjustments, etc.
 - GSSC checks for impact to existing timelines and notifies IOC if there is a problem
- GSSC integrates Guest Investigator-driven observations, IOC commands/timelines, and weekly schedule received from MOC/FOT
- ▶ GSSC provides MOC with integrated science timeline
 - List of activities and/or commands to be accomplished on observatory
 - Nominally covers a period of 7 days

Mission Planning and Command Generation

- MOC integrates the science timeline received from GSSC with ground system commands such as contact schedule, ephemeris updates, etc.
 - MOC receives timelines from GSSC and MOC checks
 - Constraint checking, invalid commands or missing sub-mnemonics, out of range parameters, command frequency limit violations, etc.
 - Absolute Time Sequence (ATS) load created and uplinked to nonactive ATS buffer for later execution
 - ATS contents are absolute time tagged commands such as instrument commands, transmitter on/off sequences, recorder playback commands,
- GSSC also forwards instrument FSW tables provided by the IOCs to the MOC for uplink
 - Uplinked as per instructions given with each table/load

Mission Planning and Command Generation

- Nominal path always goes from the IOCs to the GSSC and then to the MOC
- Backup path from the IOC to the MOC for test support and use during L&EO

LIOC

GIOC

Real-Time Telemetry

- Autonomous downlink of burst alerts or safe-mode alerts using Space Network Demand Access System
- Space Network and ground stations forwards selected Virtual Channels (VC's) to MOC in real-time (frame data)
 - Observatory HK telemetry, Burst Alerts, Safe-mode alerts, and Memory Dumps
 - All VC's stored at station and forwarded to MOC post-contact
- MOC performs traditional real-time processing on incoming telemetry
 - Extract packets, decommutate and display HK data, generate/display event messages and alarms, perform command verification
- Forward instrument packets in real-time to the LAT IOC to assist in instrument monitoring (but not critical)
 - IOC's can also call up MOC ITOS displays over the Internet (MOC Web server)

Target of Opportunity Handling

- ToO Request can result from an approved Guest Investigator proposal or an interesting celestial event
- GSSC analyzes the ToO Request (feasibility, impact on schedule) and advises the Project Scientist accordingly
- Project Scientist approves a ToO Request
- Upon receiving authorization to proceed with the ToO, the GSSC constructs the ToO Order and forwards to the MOC
- MOC recognizes ToO Order and notifies appropriate FOT personnel for action
 - FOT processes ToO Order
 - Works with SN to schedule a forward link via TDRSS
 - MOC transmits the ToO commands to the spacecraft as soon as the SN forward link is available
 - FOT monitors telemetry to verify ToO is being acted upon if done in near real time – otherwise FOT analyzes after-the-fact
 - Observatory autonomously returns to on-board observing schedule at completion of the ToO

Target of Opportunity Handling

Burst Alert Handling

- LAT and/or GBM detect GRB and determine that it warrants sending a Burst Alert to the ground
 - Instruments generate Burst Alert (not spacecraft)
 - Spacecraft initiates link with TDRSS/DAS, and sends Burst Alert as received from instruments
 - Alerts go through ground station if already in a contact with MOC
 - If the GRB warrants, LAT requests spacecraft to slew to the target (referred to as an Autonomous Repoint)
- ▶ WSC forwards messages to MOC, which pulls out Burst Alert packets and forwards to:
 - Burst Alert Processor(s) (BAP) for distribution to the science community via Gamma-Ray Coordinates Network (GCN)
 - BAP(s) co-located with the MOC, which perform additional processing on the messages
 - BAP sends to the GCN once processing completed

Burst Alert Handling (cont.)

- Burst Alerts are sent from a single location i.e. the MOC
 - Alerts captured by multiple locations (SN and GN)
 - Prefer to centralize Burst Alert frame processing
 - BAP within MOC needs the messages for additional processing
 - Directly to the GBM IOC for additional processing
 - BAP also sends to the GCN
 - Above characteristics led to GLAST approach vs. Swift approach (direct from WSC to GCN)

Burst Alert Handling (cont.)

Solid State Recorder Management

- Two distinct types of on-board data stored in recorder: Science and Housekeeping
 - Stored in two separate partitions (i.e., two virtual recorders)
 - Dumped separately, but simultaneously
 - Science on X-band, Housekeeping on S-band
 - Cannot dump LAT or GBM Science data individually must dump both
- SSR holds 96 Gbits of data, and 36-hours storage is ~ 52 Gbits
- At 20 Mbps, require a minimum of 4 contacts per day (avg 9 minutes per contact) to ensure adequate downlink time
 - Operations will plan for 5-6 contacts to account for anomalies
- ▶ FOT will automate dumps via stored commands
- During all contacts, MOC automatically monitors RF-related statistics from ground station and SSR pointers in Housekeeping telemetry
 - FOT notified for problems detected that require operator interaction
- MOC makes assessment of data completeness once frame files received from the ground stations
 - Again, operators notified if significant problems detected

Ground Station Contact Profile

- 30 day contact profile for with two sites:
 - USN-Hawaii and Malindi, Kenya
 - Minimum 3 minutes duration
 - Minimum five degrees elevation

	Contacts in 30 Days	Avg Per Day	Mean Length: Minutes	Contact Grouping	Time Between Contacts: Gap 1: Hours	Time Between Contacts: Gap 2: Hours					
Tracking Site	Tracking Site										
USN: Hawaii	225	7.3	9	All Contacts in one group	13	N/A					
CON. Hawaii	LLU	7.0		one group	10	IVA					
				Two groups of							
				•							
Malindi	201	6.5	8	3 or 4 contacts	8.5	6					

Site and	d Times	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
USN - I	Hawaii										•		=	•	1	•		•	•		•		•		
Mali	ndi								•	•		•							•	•		•		•	

SSR Dump Profile (Science Data)

SSR capacity: All contact opportunities, 3 minute minimum duration, 5° elevation

Data Processing

- Level 0 processing performed on a per-pass basis
 - Ground Station records frame-level data during each contact, sorts by VCID, and automatically transfers to MOC post-contact
 - MOC automatically begins Level-0 processing on files as they are received from the ground station
 - extraction of packets from frames, Reed-Solomon (RS) decoding, time ordering of data, removal of duplicate packets, and quality and accounting information.
 - Upon completion, files automatically sent to IOC's and GSSC
 - IOC's generate Level 1 and 2 data products and provide to GSSC
 - GSSC provides products to science community
 - GSSC provides Level 1,2 data to Mirror Site (Italy) and performs selected science data data processing

Off-line Analysis

MOC Data Trending and Analysis

- Selected spacecraft and instrument housekeeping parameters are ingested into a database
- System provides off-line trending, analysis, and plotting capabilities
- System provides remote access to users such as Spectrum Astro or IOC personnel

IOC Data Trending and Analysis

- For monitoring the status and quality of the science data, including performing instrument trend analysis and plotting
- For monitoring health & status, performing daily trend analysis, and anomaly investigation

As-Flown Timeline

- Since GLAST has the ability to autonomously deviate from the pre-planned science timeline it is necessary to track deviations or unplanned activities such as Auto-Repoint targets or ToOs.
- MOC generates an As-Flown Timeline based on what observatory actually did and provides to GSSC and IOCs
- Created entirely from observatory housekeeping telemetry
- Intended to be a high level record of the actual observatory observations